An RF Sensor for Gauging Screen-Channel Liquid Acquisition Devices for Cryogenic Propellants

نویسندگان

  • Gregory A. Zimmerli
  • Scott Metzger
چکیده

A key requirement of a low-gravity screen-channel liquid acquisition device (LAD) is the need to retain 100% liquid in the channel in response to propellant outflow and spacecraft maneuvers. The point at which a screen-channel LAD ingests vapor is known as breakdown, and can be measured several different ways such as: visual observation of bubbles in the LAD channel outflow; a sudden change in pressure drop between the propellant tank and LAD sump outlet; or, an indication by wet-dry sensors placed in the LAD channel or outflow stream. Here we describe a new type of sensor for gauging a screen-channel LAD, the Radio Frequency Mass Gauge (RFMG). The RFMG measures the natural electromagnetic modes of the screen-channel LAD, which is very similar to an RF waveguide, to determine the amount of propellant in the channel. By monitoring several of the RF modes, we show that the RFMG acts as a global sensor of the LAD channel propellant fill level, and enables detection of LAD breakdown even in the absence of outflow. This paper presents the theory behind the RFMG-LAD sensor, measurements and simulations of the RF modes of a LAD channel, and RFMG detection of LAD breakdown in a channel using a simulant fluid during inverted outflow and long-term stability tests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CFD Simulations of Flow in Capillary Flow Liquid Acquisition Device Channel

Future space vehicles will require the use of non-toxic, cryogenic propellants, because of the performance advantages over the toxic hypergolic propellants and also because of the environmental and handling concerns. A prototypical capillary flow liquid acquisition device (LAD) for cryogenic propellants was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical ou...

متن کامل

Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel

A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindri...

متن کامل

Cryogenic Tribology in High-Speed Bearings and Shaft Seals of Rocket Turbopumps

In recent years, as a rule, improvement of the reliability of liquid propellant rockets becomes an international technical problem for built-up of safe space transport systems. The high performance, liquid propellant rocket engines require high-pressured turbopumps to deliver extremely low temperature propellants of liquid oxygen (LO2, boiling point 90 K) and liquid hydrogen (LH2, boiling point...

متن کامل

CFD simulation of Pressure Drops in Liquid Acquisition Device Channel with Sub-Cooled Oxygen

In order to better understand the performance of screen channel liquid acquisition devices (LADs) in liquid oxygen (LOX), a computational fluid dynamics (CFD) simulation of LOX passing through a LAD screen channel was conducted. In the simulation, the screen is taken as a ‘porous jump’ where the pressure drop across the screen depends on the incoming velocity and is formulated by Δp = Av + Bv. ...

متن کامل

آتشزنه‌ها در سیستم‌های پیشرانش مایع غیرخود مشتعل شونده

Liquid propulsion systems have effective role in implementation of space and military mission due to high performance and specific impulse. Liquid propellants are divided into two categories: hypergolic and non-hypergolic propellants. Non-hypergolic propellants need an igniter system to provide the initial energy for propellant ignition compared with hypergolic propellants. Since failure in ign...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014